Jagdeep Singh: Yeah, that’s a good question. I think the way that we would interpret the QSE-5 is rather than any kind of a schedule acceleration, which is of course constrained by the time it takes to get automation equipment in, to turn up that equipment and so on. And there’s not a lot we can do to compress those times. Those are really our suppliers schedules. Rather than that I would think about this as risk reduction. So if we had to design a different form factor that would say, you know, dramatically different than what we’ve been working in so far, there’s the risk that that could take longer because then we need to modify things like the robot and detectors that are used to pick up and load, unload the film’s laser cutting that we use to do various steps in the process and so on.
So the way to think about this QSE-5format is because it leverages the same form factor, the same dimensions we’ve been working in. It really represents, in our view, the fastest path to market for our technology because trying to change that form factor would just potentially extend things out. So that’s the way to think about QSE-5 as a way to reduce risk rather than an acceleration.
Chris Snyder: Thank you. I appreciate that. I want to follow up on the cathode in the high cathode loading unit cells. So I guess maybe part A, can you just talk a little bit about why that is so important for the company? Obviously, kind of historically, the focus has really been on the anode. It does feel like the company has a lot on its plate already. So kind of why add this to the mix and then kind of question B, when we see when we look at the shareholder letter on page three and we see the performance of the QSE-5 versus kind of competing alternatives in the market, is that using the higher cathode loading cell? Thank you.
Jagdeep Singh: Yeah, that’s a great question and I’m glad you asked it. So that dark blue curve on page three on the Power energy performance frontier chart, that is the range of energy and power combinations that can be achieved in a QSE-5 like cell. And the difference between being on one end of that curve versus the other is exactly that cathode loading. So the reason why capital loading is important is because it allows you to be on the right hand side of that curve where you have more energy. But if you wanted to have a lower loading cathode, then you could get more power. So it’s a really important parameter. In the past, what we’ve shown data on is our roughly three milliamp hour for semi squared cells and this is north of five milliamp hour for semi squared, which allows us to be a higher loading cathode than say conventional 2170 cells that we’ve mentioned in the letter that are used in some of the best-selling EVs today.
So the short answer to your question is, you know, squeezing more cathode material into the cell is how you get more energy into the cell. Now, you can’t do that with conventional cathodes as easily because you have you’re constrained by the transport distance inside the cell from one end of the cathode to the other end of the anode. In our design, of course, because there is no conventional hosted anode, there’s no carbon or silicon in our anode. It’s just a layer of metallic lithium that plates as you cycle that transport path is shortened. And so because we have a shorter path through the anode, we can use that extra distance to make the cathode more, more energy dense in effect. So that’s the reason why the loading is so important.
Chris Snyder: Thank you, Jagdeep.
Jagdeep Singh: Absolutely.
Operator: [Operator Instructions] We’ll take our next question from Ben Kallo with Baird.