NVIDIA Corporation (NASDAQ:NVDA) Q2 2024 Earnings Call Transcript

And the reason for that is because we accelerate so many different things. The second characteristic of our company is the installed base. You have to ask yourself, why is it that all the software developers come to our platform? And the reason for that is because software developers seek a large installed base so that they can reach the largest number of end users, so that they could build a business or get a return on the investments that they make. And then the third characteristic is reach. We’re in the cloud today, both for public cloud, public-facing cloud because we have so many customers that use — so many developers and customers that use our platform. CSPs are delighted to put it up in the cloud. They use it for internal consumption to develop and train and to operate recommender systems or search or data processing engines and whatnot all the way to training and inference.

And so we’re in the cloud, we’re in enterprise. Yesterday, we had a very big announcement. It’s really worthwhile to take a look at that. VMware is the operating system of the world’s enterprise. And we’ve been working together for several years now, and we’re going to bring together — together, we’re going to bring generative AI to the world’s enterprises all the way out to the edge. And so reach is another reason. And because of reach, all of the world’s system makers are anxious to put NVIDIA’s platform in their systems. And so we have a very broad distribution from all of the world’s OEMs and ODMs and so on and so forth because of our reach. And then lastly, because of our scale and velocity, we were able to sustain this really complex stack of software and hardware, networking and compute and across all of these different usage models and different computing environments.

And we’re able to do all this while accelerating the velocity of our engineering. It seems like we’re introducing a new architecture every two years. Now we’re introducing a new architecture, a new product just about every six months. And so these properties make it possible for the ecosystem to build their company and their business on top of us. And so those in combination makes us special.

Operator: Next, we’ll go to Atif Malik with Citi. Your line is open.

Atif Malik: Hi. Thank you for taking my question. Great job on results and outlook. Colette, I have a question on the core L40S that you guys talked about. Any idea how much of the supply tightness can L40S help with? And if you can talk about the incremental profitability or gross margin contribution from this product? Thank you.

Jensen Huang: Yeah, Atif. Let me take that for you. The L40S is really designed for a different type of application. H100 is designed for large-scale language models and processing just very large models and a great deal of data. And so that’s not L40S’ focus. L40S’ focus is to be able to fine-tune models, fine-tune pretrained models, and it’ll do that incredibly well. It has a transform engine. It’s got a lot of performance. You can get multiple GPUs in a server. It’s designed for hyperscale scale-out, meaning it’s easy to install L40S servers into the world’s hyperscale data centers. It comes in a standard rack, standard server, and everything about it is standard and so it’s easy to install. L40S also is with the software stack around it and along with BlueField-3 and all the work that we did with VMware and the work that we did with Snowflakes and ServiceNow and so many other enterprise partners.